Accelerating Point-Based POMDP Algorithms via Greedy Strategies
نویسندگان
چکیده
Many planning tasks of autonomous robots can be modeled as partially observable Markov decision process (POMDP) problems. Point-based algorithms are well-known algorithms for solving large-scale POMDP problems. Several leading point-based algorithms eschew some flawed but very useful heuristics to find an -optimal policy. This paper aims at exploiting these avoided heuristics by a simple framework. The main idea of this framework is to construct a greedy strategy and combine it with the leading algorithms. We present an implementation to verify the framework’s validity. The greedy strategy in this implementation stems from some common ignored heuristics in three leading algorithms, and therefore can be well combined with them. Experimental results show that the combined algorithms are more efficient than the original algorithms. On some benchmark problems, the combined algorithms have achieved about an order of magnitude improvement in runtime. These results provide an empirical evidence for our proposed framework’s efficiency.
منابع مشابه
Accelerating Point-Based POMDP Algorithms through Successive Approximations of the Optimal Reachable Space
Point-based approximation algorithms have drastically improved the speed of POMDP planning. This paper presents a new point-based POMDP algorithm called SARSOP. Like earlier point-based algorithms, SARSOP performs value iteration at a set of sampled belief points; however, it focuses on sampling near the space reachable from an initial belief point under the optimal policy. Since neither the op...
متن کاملA POMDP Framework to Find Optimal Inspection and Maintenance Policies via Availability and Profit Maximization for Manufacturing Systems
Maintenance can be the factor of either increasing or decreasing system's availability, so it is valuable work to evaluate a maintenance policy from cost and availability point of view, simultaneously and according to decision maker's priorities. This study proposes a Partially Observable Markov Decision Process (POMDP) framework for a partially observable and stochastically deteriorating syste...
متن کاملSparse Signal Recovery via ECME Thresholding Pursuits
The emerging theory of compressive sensing CS provides a new sparse signal processing paradigm for reconstructing sparse signals from the undersampled linear measurements. Recently, numerous algorithms have been developed to solve convex optimization problems for CS sparse signal recovery. However, in some certain circumstances, greedy algorithms exhibit superior performance than convex methods...
متن کاملIntelligent Planning for Autonomous Underwater Vehicles
Exploration for robotic mapping is typically handled using greedy entropy reduction. Here we show how to apply information lookahead planning to a challenging instance of this problem in which an Autonomous Underwater Vehicle (AUV) maps hydrothermal vents. Given a simulation of vent behaviour we derive an observation function to turn the planning for mapping problem into a POMDP. We test a vari...
متن کاملInformation-Lookahead Planning for AUV Mapping
Exploration for robotic mapping is typically handled using greedy entropy reduction. Here we show how to apply information lookahead planning to a challenging instance of this problem in which an Autonomous Underwater Vehicle (AUV) maps hydrothermal vents. Given a simulation of vent behaviour we derive an observation function to turn the planning for mapping problem into a POMDP. We test a vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010